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SLIVLSY

A 4C-foot-dIieter ABC (con-.44al) rotor system, was tested in the NASA/Ames
Rlesearch Center 40 fl. x 80 ft. WlInd Tuanel. The six rigid blades, tapered
in both plnnform and thIckness, were instrumented to measure flatwise,
e4gewize. trnd torsional strain. Advaice ratios up to 0.91 and tip Mach
t.ýs to 0.83 vre tested over a wide range .& collective pitch and shaft
aengle of attack. Lateral displacement of ir'dividual rotor lift was varied

zom I percent to TO percent of roLor radius. The performance, control,
stress, and vibration data recorded during these tests are presented and
discussed. Selected data are compared with theoretical predictions over

4 a range of advance ratios from C.21 to 0.91.

The blade lift capacity was found to be sigigificantly greater than in the
"came of articulated rotors, aad design lift coefficient was maintained to
an advance ratio of 0.91 with good power efficiency. Measured and pre-
dicted perfor-ances were in good agreement.

Large control power in pitch and roll was available at all advance ratios,
and yaw control diminished at low purer settings. Little or no undesir-
able control coupling existed except for yaw-roll and the effect of lift
and lift offset controls on pitching moment. Control mixing may be desir-
able to reduce these effects. The control derivatives and longitudinal
stability characteristics were as predicted by theory.

At design lift coefficient and optimum L/D, the measured blade stresses
indicate an unlimited operating capability at advance ratios up to approxi-
mately 0.6. The blade and hub stresses were lower than predicted and the
control loads, 0-though higher than predicted, were below allowable. Total
fixed system vibration was usually low. No structural instabilities were
detected anywhere in the operating range.
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INTRODUCTION

The Advancing Blade Concept (ABC) for helicopter design uses coaxial,
counterrotating, rigid rotors. The use of this concept reduces rotor
retreating blade stall by unloading the retreating blade and loading the
advancing blade without increasing advancing blade vit1 Mach number. Two
rotors are used to balance the resulting roll moments. The coaxial (rather
than biaxial) configuration is considered to be optimum since it has the
shortest load path between rotors. Besides the alleviation of retreating
blade stall and its implicit performance gains, other advantages are pre-
dicte 'or this rotor system, arising out of the rigid root retention of
the blades and the coaxial arrangement of the rotors. These include greater
load factor capability, increased control power and center-of-gravity
travel, reduction of rotor head complexity (through elimination of flapping
and lagging hinges), elimination of antitorque power requirements, and the
potential of cancelling particular frequencies of vibration through control
of relative rotor motion.

Although the basic theoretical advantages of the ABC system are readily
understandable, several complex problems hai to be resolved to realize
these benefits: (1) The rotor blades had to be rigid enough to sustain
the anticipated load offsets, yet light enough for practical use on an
aircraft; (2) the rotors had to be spaced for low profile but with
minimum aerodynamic interference and with safe tip clearances; (3) the
rotors and control system had to Le dynamically stable, despite the elim-
ination of lag dampers and the use of long control rods; (4) the method
of pilot control had to be similar to that of conventional single rotors,
despite the addition of another rotor; and (5) the system had to operate
at acceptable vibration levels. In order to resolve these and other
questions, Sikorsky Aircraft and United Aircraft Research Laboratories
began in 1965 a series of analytical and experimental programs to develop
and test dynamically scaled ABC hardware. Much of this early work is
discussed in Reference 1. It was concluded from these and other investi-
gations that the ABC sstem was practical and that full-scale hardware
could be developed.

The purpose of the present investigation was to experimentally evaluate a
full-scale ABC rotor system both statically and over a substantial forward
speed range. The rotor built for this program was designed for an opera-
ting lift of 14,500 pounds and a maximum speed of 230 knots. A descrip-
tion of the rotor static test, including a transmissibility study of the
supporting module, is given in Reference 2. Briefly, the system was found
to be capable of operating at extreme conditions of power and blade bending
moment for substantial periods of time. The rotor also was found to re-
spond in a stable fashion when subjected to step and sinusoidal control
excitations.

To evaluate bhe system in forward flight, the strain-gage-instrumented
ABC rotor was installed in the NASA/Ames Research Center 40 ft x 80 ft Wi-i
Tunnel. Advance ratios ul to 0.91 and tip Mach numbers to 0.83 were
tested over a wide range of collective pitch and shaft angle of attack.

1



Lateral i3ipiaceser-t of individual rotor lift was varied from 1 percent to
70 percent of rot,.'r radius. This report examines the performance, control,
and stress data rocv.-ded during these tests, and compares test results
with theoretical predieio.ns.

The static and vin.i t••nnel tests were Jointly sponsored by tSAAK, DL and
Sikorsky Aircraft. 'The vird-tunnel test was conducted by the Ames Research
Center of the National Aerouautics and Space Administration.

1
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DESCRIPTION OF FACILITIES AND EQUIPMENT

WIND TUNNEL

The full-scale wind tunnel located at the NASA/Ames Research Center is a
closed-throat, closec-return type, with a test section L0 feet high and
80 feet wide. This tunnel has a nominal maximum speed capability of 200
knots and is powered by six 6000-horsepower electric motors. Model forces
and moments are measured by a six-component mechanical balance, with the
readings punched directly on computer cards for processing.

* ROTOR DRIVE AND CONTROL SYSTEM

The rotor system and its supporting module are shown as installed in the
wind tunnel in Figure 1. The rotor systom is mounted on a specially
designed coaxial gearbox, with provision for two separate power inputs. A
removable gear coupling provided the option of powering the rotors either
separately or in combination. The latter method was employed throughout
the coaxial rotor tests. Power to +he gearbox inputs was supplied by two
NASA 1500-horsepower variable-speed electric motors. The six-bladed
coaxial hub is shown enclosed by a slip-ring assembly and slip-ring fairing.
Terminal boxes are mounted between the upper rotor blades to accommodate
instrumentation leads from the rotating system through the slip rings to
the fixed system. An additional slip-ring assembly with its fairing is
located directly below the gearbox. All components are mounted on a
triangular I-beam frame, and the complete assembly is enclosed in a stream-
lined fairing. The model is supported on the tunnel balance by two faired
forward struts and one faired, telescoping tail strut. A self-centering,
hydraulic vibration isolation system was installed at the tail strut attach-
ment point. This isolator was used only as a rigid link, however, since
such isolation was found to be not required during the test.

Control to each rotor was supplied by three remotely operated electro-
mechanical actuators which introduced longitudinal, lateral, and collective
pitch through typical aircraft type linkages. CH-54 standard hydraulic
servos were employed to react the rotor forces. To reduce the possibility
of the rotors inadvertently being set to unreasonably different operating
conditions, and to simplify control settings, the electro-mechanical
actuators of the upper and lower rotor were electrically ganged such that
an upper rotor actuator and the corresponding lower rotor actuator responded
simultaneously to one signal, producing appropriate motions of equal magni-
tude. One type of signal (or control switch) caused an actuator pair to
move in opposite directions, while another type of signal caused this
actuator pair to move in the same direction. Thus, there we'-e six operator's
rotor control switches (two for longitudinal, two for lateral, and two for
collective pitch).

ROTOR BLADES AND HUB

The test was conducted using six rigidly attached, 20-foot-radius rotor
blades, which were balanced both statically -.nd aerodynamically. The
upper rotor hub arms are preconed 5 degrees, while the lower rotor hub

3



arms are not preconed. The blades are tapered in both planform and thick-
ness, having an airfoil contour of NACA 0030 near the root and a contour
of 0006 at the tip. They are of -10 degrees, nonlinear, aerodynamic twist.
The primary structural member of the blade is a titanium alloy spar, retained
at the root end by two sets of radially loaded, tapered roller bearings
and four thrust bearings. The loads are transmitted through the bearings
to a cylindrical sleeve which is bolted to the rotor hub. Further details
of blade geometry are given in Figure 2. The blade structural properties
are given in Figure 3; the blade natural frequency diagram is shown in
Figure 4.

INSTRUMENTATION AND DATA ACQUISITION SYSTEM

Five of the six blades on the rotor system were strain-gaged to measure
eight flatwise and eight chordwise normal bending •ads, three torsional
moments, and sixteen total stresses. One blade of each rotor was desig-
nated as the primary instrumented blade. Figure 5 shows the location of
the principal operative blade and sleeve gages on either the primary or the
secondary blade. Three servo loads and one rotating pushrod load of each
rotor were recorded, as well as rotating and stationary scissors loads.
Fifteen vibration measurements, three of which rotated with the hub, were
also recorded during the test. Blade tip clearance was measured contin-
lously by means of six specially modified electronic blade tracker units
located on the tunnel floor, below the six blade cross-over points (see
Figure 1). Individually conLrolled tilt-tables provided alignment for
various shaft angles. Four remotely controllea closed-circuit television
cameras also were used to monitor blade tip paths.

A modular control console was used to provide rotor control and monitoring
functions. The displays available included rotor tip clearance, rotor rpm,
gearbox temperatures and oil pressures, chip detector, first- and second-
stage servo hydraulic pressure, indicators for primary and secondary power
for the module and data acquisition system, indicators for pitching and
rolling moments of each rotor, actuator position indicators, and resolved
blade pitch angle indicators for each rotor.

A resistance transducer was employed to measure blade pitch. This signal
was also electrically resolved into the first-harmonic sine and cosine
amplitudes. These components were displayed on the control console for
use in setting test points. The blade sleeves of each rotor were instru-
mented for flatwise bending, and this measurement was resolved into in-
dividual rotor pitching and rolling moments for console display. Secondary
measurements of rotor blade pitch and moments were available for instantan-
eous backup. Additional on-line monitoring of critical gages was provided
by 16 channels of peak-to-peak and steady information. Eight channels at
a time were recorded on a 16-channel oscillograph.

Rotating electrical signals from the lower rotor were brought down by
first going through an assembly if 112 slip rings located between the
rctr•rz and then through the upper rotor assembly of 41L2 slip rings attached
tU the bottom of the gearbox. The synchro-resolvers and rotor azimuth
hardware were driven by gears off the bottom of the rotor gearbox.I4



Time-averaged six-component rotor static force and moment data were
recorded by the wind-tunnel balance and processed by NASA/Ames. Rotor
power was determined by visual recording of the drive motor uattmeters.

The dynamic data acquisition system is diagrammed in Figure 6. The
principal acquisition device was a magnetic tape recorder which had a
capacity of 14 trac'ls. The recording system was a narrow-band FM multiplex
using standard subcarrier oscillators. Ten channels of information, bands
7 through 16, were recorded on individual tape tracks. Ten direct record
tracks were used for dynamic data. In addition, one track was used for
audio comments, another for rotor azimuth reference information, and another

* for data run commands to be used in processing. All dynamic measurements
wore recorded simultaneously to provide proper time correlation of the data.
Sig.pal conditioning for the strain-gage instrumentation channels was
accomplished using Sikorsky-designed electronic modules.

DATA PROCESSING SYSTEM

The dynamic test data were processed by means of the technique block-dia-
grammed in Figure 7. A single tape track, which contained a maximum of ten
measurements in an FM multiplex, was played back into a bank of narrow-band
FM discriminators. The discriminator outputs were then fed into normalizing
amplifiers that scaled all measurements to a common signal level (10 volts
= full scale). These outputs were presented to a solid-state multiplex with
sample and hold amplifiers. The sampling rate of the multiplexer was
controlled by hardware that utilized control signals from the analog tape.
The control signals, 72 azimuth pulses per rotor revolution, and a data run
command were combined to generate 720 data sampling pulses for 10 data
cycles within a given data burst. The multiplexer output was digitized by
a nine-bit (eight-bit plus sign) analog to digital converter and put into
format on digital tape through a Scientific Data System Computer, Model 910.
This digital tape was then processed to engineering units by a computer,
with calibration constants incorporated in the digital computations. The
computations also included averaging of the individual data cycles within
a-data run to yield an average cycle. Peak-to-peak and harmonic content
were then calculated from these average cycles.



TEST PROCEDURE AND ANALYTICAL METHODS

TEST PROCEDURE

The method of operating the rotor was to set a desired tip speed, shaft

angle of attack, forward speed, collective pitch, and lift lateral dis-
placement control (B~s). Collective pitch (0c) and/or B' was then varied

c is
by increments not exceeding two degrees, with each setting representing a
data recording point. Coupled longitudinal and lateral cyclic pitch (A15
and B ) were adjusted at each point to provide nominally zero (± 5000
ft-lbisoverall module rolling and pitching moments, read from resolved
blade root bending gages. The other two rotor controls, lift longitudinal a
displacement (A{) and differential collective pitch (Ae), were generally
left at zero (± degree). At 15 selected points in the test spectrum,
substantial overall module moments were generated in order to evaluate
rotor control and static stability characteristics.

Five combinations of tip speed and forward speed were tested; they are
shown graphically in Figure 8. Average values of air density, advancing
tip Mach number, and advance ratio at all flight conditions are given in
Table I. Conditions 6 and 7 are reruns of conditions 1 and 2, with the
lower rotor blades removed. Testing procedure varied somewhat for these
last two cases in that all six rotor controls were set to duplicate thoseof selected test points of the corresponding dual rotor condition.

Tares

At the conclusion of all dynamic testing, the rotor blades were removed and
the module/rotor head combination was tested over a range of forward speed
and shaft angle of attack to determine its lift, drag, and moment character-
istics. The tare values thus obtained were represented by a mathematical
curve fit and used in the NASA/Ames performance data reduction program.
The performance data thus reflect only the forces generated by the rotor.
The six hub arms for the tare test extended 19.5 inches from the center of
rotation.

ANALYTICAL METHODS

Both a rigid blade approach and a fle-ible blade approach are used in the
subsequent theoretical calculations. Rigid blade theory is used for
performance and control derivative calculations, while flexible blade
theory is used to calculate stresses, structural '.oads, and static stabil-
ity.

Rigid Blade Theory

The theory used for correlation with the performance and control data was
the Yawed Blade Element Rotor Performance Method. The method assumes rigid
blades (which may or may not be hinged) subjected to uniform momentum inflow.
The blades are mathematically divided into a number of segments, each of
which is treated as if immersed in a three-dimensional flow field, including
the effects of stall and compressibility. When applied to ABC rotor
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calculations, variable-thickness airfoil section data are used (compiled
from a number of wind-tunnel tests), and the effects of upper and lower
rotor interaction are approximated by allowing the wake from the upper
rotor to pass through a portion of the lower rotor.

Flexible Blade Theory

The method used for correlation with the structural loads and stability
data is the Normal Modes Aeroelastic Blade Analysis. This analysis is a
numerical method for integrating the fully coupled flatwise, edgewise, and
torsional equations of motion of a flexible rotor blade. As applied to
the computations in this report, the aerodynamic portions of the analysis
are similar to those of rigid blade theory with the following exceptions:
NACA 0012 airfoil data are used throughout instead of variable-thickness
section data; no upper-lower rotor interaction is assumed; and a two-
dimensional, rather than three-dimensional, flow field is assumed to act
at each blade element. For this investigation, three flapwise modes, two
edgewise modes, and one torsional mode of flexure were used to represent
the rotor blade motion.

a



DISCUSSION OF PERFORMANCE

BASIC PERFORMANCE DATA

Complete nondimensional performance data (drag, power, L/D, side force,
and rolling, pitching, and yawing moments) from these tests are presented
in the Appendix, plotted versus rotor lift coefficient (CL/a) for lines of
constant shaft angle. Also plotted are the principal rotor operating
parameters, 6c, Als' and lift lateral displacement. All of these data
are grouped according to flight condition (combination of forward velocity,
tip speed, and configuration) and subdivided according to lift lateral
displacement control setting (B ). In all, there are data for 25 combina-
tions of flight condition/B{ seiting. A sample combination of these data,
depicting a velocity of 179 1nots and with B' set at 6 degrees, is given

isin Figure 9. These data are typical of other conditions as well, and were
chosen since they represent the highest forward velocity tested (although
not the highest advance ratio tested). A velocity of 179 knots was the
maximum speed attained by the tunnel with the module and its associated
monitoring equipment installed. The B' setting of 6 degrees yielded the
highest rotor L/D's for this velocity. 1i

Figures 9(a) through 9(c) show the rotor drag coefficient, shaft torque

(power) coefficient, and lift-drag ratio characteristics as a function of
shaft angle and lift coefficient. Figure 9(a) also contains lines of
nominal collective pitch (e ) at 75 percent blade radius. The ABC rotorc
reacts to changes in shaft angle and collective pitch in much the same
manner as conventional rotors, in that tilting the shaft into the wind
(-a ) increases power and propulsive force (negative drag), while increases
in collective pitch cause an increase in lift. The magnitude of the
effect, however, is considerably greater than in the case of articulated
rotors when the latter have the tip path plane held constant. For example,
Figure 15 of Reference 3 depicts performance data of an articulated rotor
for a similar tip speed (651 ft/sec) and a similar forward speed (177 kn).
For the articulated case, increasing collective pitch by 2 degrees (at
constant shaft angle) typically produced an increase in lift coefficient
of 0.02. For the ABC rotor, a similar increase in collective pitch pro-
duces approximately twice (o.0A) the increase in lift coefficient at this
forward speed (see Figure 9(a)). On a dimensional basis, the lift in-
crease per dgree collective is over 90 percent greater for the ABC.
Moment control characteristics will be discussed in a later section.

A comparison of the ABC and articulated rotor lift coefficient data of
Reference 3 reveals that the test spectrum for the ABC rotor begins at
lift coefficients that represent the upper limits of the articulated rotor
test spectrum. Such larga lift generating capacity of the rotor system
was obtained at all advance ratios tested with little evidence of stall-
associated vibration or control load increase (see Discussion of Stresses
and Loads). A lg lift coefficient capability was established to advance
ratios of at least 0.91. Model tests (Reference 1) have revealed that
F-,'d vibratory blades stresses (and approximately the critical load limit)j-cur at an advaice ratio of 1.0 and decrease thereafter. For 'he present

investigation, tunnel balance resonance at low rotor tip speeds prevented
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further verification of this behavior for steady-state conditions. How-
ever, future tests might avoid this difficulty by rapidly slowing the rotor
as it passes through the v = 1.0 flight regime, or by approaching it from
the stopped-rotor state.

The variation in rotor equivalent lift-drag ratio with shaft angle and
lift coefficient is shown in Figure 9(c). The denominator of this ratio
contains the actual rotor drag (negative for propulsive force), plus the
rotor shaft horsepower converted to an equivalent drag (D = 550 Hp/V).
The L/D parameter is useful for choosing the combination of shaft angle
and B' that produces the most efficient airload distribution at a desired

ls
lift coefficient. For example, the zero shaft angle curve of Figure 9(c)
is seen to be optimum at lower lift coefficients while 4 degrees appears
better at higher lift coefficients. These distributions change at other
combinations of velc.2ity/B" , as may be seen from the Appendix. In general,
the lift coefficient at which maximum L/D occurs increases with advance
ratio, for any given shaft angle or B' . In particular, at 4 = 0.91,
maximum L/D was encountered at a lift coefficient of about 0.18 (see
Appendix). Since this lift coefficient is about 10 percent greater than
that required to achieve design rotor lift at this advance ratio, so:ae
refinement in the blade aerodynamic design may be indicated for high-
advance-ratio operation. The definition of the upper Jhmit on L/D obtain-
able through changes in blade geometry is still under .nvestigation
analytically.

Figure 9(d) shows the variation in lift lateral displacement as a function
of lift coefficient and shaft angle. This quantity was calculated by
dividing the upper rotor rolling moment (derived from resolved blade root
bending gages) by the upper rotor lift (assumed equal to one-half of the
system lift). It may be noted for this case that lift lateral displacement
increases with lift (i.e., collective pitch) when shaft angle is held
constant, and increases with negative shaft tilt (i.e., propulsive force)
when lift is held constant. This, and data at other velocity/B' combina-
tions, substantiates the basic ABC premise that for a given lifisand
propulsive requirement there exists a unique optimum lift lateral displace-
ment which varies with advance ratio and which can be achieved through
proper combination of shaft angle and BI'.

As described in the Test Procedure, the method of operation called for
trimming to zero overall (net) aircraft moments before taking each data
point. The control system is designed such that net pitching, rolling,
and yawing moments are controlled through application of A , B , and A6,
respectively. Figure 9(e) depicts the amount of A needeLto Irim net
pitching moment for each data point. There is litile variation with shaft
angle, but significant variation with lift as anticipated. The magnitude
of negative A shown is proportional to the magnitude of nose-up pitching
moment which lie A control cancelled. Most of this moment is caused by
the lift of the advancing blades, some of which translates into longitudi-
nal moment through phase lag due to blade flexibility. For a coaxial
system, such precession effects are additive as affecting longitudinal
moments and subtractive for lateral moments. This behavior was confirmed
in the present investigation. In fact, no B1s control is plotted, since
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blade root bending gages did not indicate any significant lateral unbalance
in upper-lower rotor rolling moments for any flight condition, and thus
little or no B control was applied. Subsequent to the tests, some

isdiscrepancies were noted between those roll moments derived from blade
root bending gages and those recorded by the wind-tunnel balance system.
These differences are generally small and have little bearing on the analy-

ses presented herein. In any case, were any net roll moments actually
present, they could easily have been trimmed to zero through the large roll2
control power afforded by B1 . Such control derivatives are discussed in
a subsequent section of this report.

Figure 9(f) presents the net side force coefficient as recorded by the wind-
tunnel balance. Cancellation of side force would take place for a coaxial
system with identical, noninterfering rotors. One mechanism by which this
small side force could have been produced is the difference in upper and
lower rotor precones. Dissymmetry in upper and lower rotor aerodynamics
or some small offset in the resolution of balance forces may also con-
tribute to side force.

Figures 9(g), 9(h), and 9(i) depict the net rolling, pitching, and yawing
moments recorded by the wind-tunnel balance. As has been mentioned, the
intent was to trim these moments to approximately zero at each data point.
The net balance moments recorded are presented for reference at all flight
conditions in the Appendix. It is seen for this example that recorded
pitching and yawing moments did remain nominally zero (Figures 9(h) and
9(i)), and that balance rolling moment remained somewhat negative. Kowever,
as previously discussed, blade root bending gages showed zero net rolling
moment, and thus no B control was applied. Further exploration of this
discrepancy between balance and blade root rolling moment measurements is
beyond the interest of this report, since, as will subsequently be shown,
more than ample roll control was available in any case. The resolution
of the question may be related to the balance side-force measurement dis-
cussed in connection with Figure 9(f). The reader is also referred to the
single-rotor flight conditions (numbers 6 and 7 of Table I) in the Appendix,
where balance moments are plotted against blade root moments and wattmeter
readings are plotted against balance yaw measurements.

The near-zero yawing moments of Figure 9(i), achieved with little or no
application of A6 control, demonstrate the in-plane symmetry of upper and
lower rotor aerodynamics. Conventional rotor antitorque power require-
ments are thus largely eliminated for the ABC system.

The measured stresses and loads corresponding to the performance results
of Figure 9 are presented in the section "Discussion of Stresces and
Loads".

A qualitative summary of the preceding discussion of the effect of major
test variables on measured rotor performance parameters is given in Table
II. Additional trends are also shown in this table which may be verified
by a study of the presentations in the Appendix. The effect of any vari-

able shown is vlid only when all other variables are held simultaneously
fixed.
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CORRELATION OF PERFORMANCE DATA WITH THEORY

In order to evaluate the capability of predicting ABC performance, stresses,
and loads over a wide range of advance ratio, measured results were
cr03s-plotted versus advance ratio at nominal design lift coefficient.
The shaft angle and B' combination chosen at each advance ratio was that
yielding the highest egsted L/D at the design lift coefficient. Theoreti-
cal calculations were then performed, constraining the lift, shaft angle,
and B' schedules to be the rame as for the test data. Figure 10 shows the
variailon with advance ratio of the independent variables chosen. As seen
in Figure 10(a), a lift value of 14,500 lb was used at the first three
advance ratios. At the two highest advance ratios (0.70 and 0.91), the
lift is scaled down (short dotted line) in accordance with the reduced tip
speeds used to achieve these high advance ratios in the tunnel test. The
lift coefficientz, however, are higher for the high W conditions than for
the low p cases. Also shown at high u's is a line of constant lift
(dashed line). Additional calculations were performed at this lift, with
advancing tip Mach number increased tu full-scale values, in order to
demonstrate the high forward speed characteristics predicted for the rotor
system operating at the same lift coefficients and advance ratios as the
tunnel test article. The Mach number schedule for the test data and the
tvo schedules for theory are given in Figure 10(b).

Figures 10(c) and 10(u) indicate the shaft angle and B' schedules employed.
Note that the theoretical inputs for both the high tip-iach number case
and the reduced tip Mach number case were chosen to follow the test data.

Further details of the inputs for the theoretical calculations are given
in Table III. Conditions A and B 1., this table represent the full-scale
tip Mach number calculation inputs. Also shown is the longitudinal cyclic
pitch (A ) necessary to trim out pitching moment for each test condition.
A value 16 zero was assumed, however, for all performance calculations,
since these calculations were carried out using rigid blade theory. As
discussed in the preceding section, the A control was needed in practice
to counteract phase lag effects caused by-Blade flexibility. In the theory
used for the performance calculations, no such coupled moments are generat-
ed and so no A is required to counteract them. The correlation obtained
in this manner thus typifies the results which would be obtained by a pre-
liminary designer employing rigid blD de theory to predict performance for
a projected configuration. For the stress and load correlation (discussed
in a later section), the test values of longitudinal cyclic pitch were
used with flexible blade theory.

The results of the performance correlation study are given in Figure 11.
They are shown in dimensional form to provide for easy application of the
results to aircraft performance computations, if desired. The circled
points again represent test data, the short dotted line represents calcu-
lations at the wind-tunnel tip Mach numbers, and the dashed lines are
calculations at full-scale tip Mach number. Figure 11(a) shows the varia-
tion with advance ratio of measured and predicted rotor shaft horsepower.
The unusual variation of the horsepower (and other parameters of Figure 11)
with advance ratio is due to the varying combinations of shaft angle and
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B' required for best rotor L/D (see Table III). In addition, the reduc-
t on in tip speed at the two highest advance ratios causes a change in the
character of the curves above p = 0.5.

The rotor power characteristics a.-e seen to be well defined by theory. At
two advance ratios (p = 0.35 and u = 0.70) the theory predicts somewhat
higher than measured power. As expected, increases in pojer are predicted
for the full-scale Mach number cases, with power requirements falling off
at P = 0.7 as tip speed is decreased to keep M, from exceeding 0.9 (see
Table III, cases A and B).

The measured and predicted rotor drag force characteristics are in excel-
lent agreement for the cases investigated, as shown in Figure 11(b). The
variation in rotor drag forces expected at full-scale lift and Mach number
is also shown at tne 41-th advance ratios.

The measured and predicted lateral bending moments experienced by each
rotor shaft are depicted in Figure 11(c). The predicted moments are some-
what less than those measured in the wind tunnel, possibly because the
effects of blade flexibility are not accounted for in this particular
method. Maments of approximately 70,000 foot-pounds are seen to be predic-
ted at full-scale Mach number, since higher dimensional lifts are generated.
To verify the system's capacity to support such moments, conditions were
explored during the test with lateral bending moments greater than 70,000
foot-nounds. This may be verified by moment ccmputations us!.ng the data i
of Figure 9(d) or similar figures in the Appendix. For example, at C /a

0.16 in Figure 9(d), the lift lateral displacement Is 0.37 for a=
degrees. Thus,

Lateral Moment = {upper rotor lift } {lift offset}
{ 2 2

C L/a)awR(QR) p}{f(.37)(20)1

2 74,000 foot-pounds

Figure 11(d) shows the lift lateral displacement for best L/D with this
blade geometry, as a function of advance ratio. There is evidence that the
test spectrum at the two highest advance ratios did not include the optimum
lateral displacement setting. True optimum displacement at high u may be
up to 30 percent less than that shown in Figure 11(d). The theoretical
calculations indicate that optimum lift lateral displacement is expected
+n remain substantially unchanged at full-scale values of lift and Mach
number.

The collective pitch, e c, required to prcduce the desired lift is depicted
in Figure 11(e). Theory and experiment are in good agreement, with the
theory specifying approximately one degree more than actually required at
the higher advance ratios. Predicted collective pitch requirements de-
crease slightly for full-scale lift and tip Mach number.
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TiR Clearance

As discussed previously, blade tip clearance was monitored continuously
throughout the test using television cameras and electronic blade trackers.
The closest approach of the rotor tip path planes at design lift coeffi-
cient and optimum lift lateral displacement was 20 inches. To simulate
blade overload and nonoptimum lateral displacement operation, the tip
paths were brought to within 9 inches for several test points at an
advance ratio of 0.7. For these conditions, the tip paths were observed
to be steady, predictable, and controllable.

To summarize the preceding discussion, it has been shown that the wind-
tunnel performance of the ABC rotor followed qualitative expectations to
a high degree. A wide range of operating regimes was explored experi-
mentally, and the measured and predicted performances were shown to be in
good agreement for the cases illustrated. The data presented in the
Appendix should provide an ample source of material for future quantitative
studies. It is presented in a form suitable for cross-plotting at any
desired lift coefficient, and for easy reference to the corresponding
structural loads.
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DISCUSSION OF STRESSES AND LOADS

MEASURED STRESS AND LOAD DATA

The Ltre3s and load data measured during the wind-tunnel tests are shown
in final form in the Appendix. From the 95 measurements recorded on mag-
netic tape, 24 were chosen to represent the major areas of stress, load,
and vibration interest. The remaining measurements were either approximate
duplications of the ones chosen or the gages were net operative for suffi-
cient periods of time to provide for meaningful analysis. Included in the
presentations are blade flatwise and edgewise stresses, torsional moments,
pushrod loads, servo lo~ds, and hub stresses. The one-half peak-to-peak values
of each of the 24 parameters are plotted versus C /a for each of 25 test
condition/Bjs combinations. In some instances a1ý 24 parameters are not
plotted because of insufficient data or an inoperative strain gage. A
typical sample of the data presented in the Appendix is given in Figure 12
for one of the test condition/B!s combinations.

Figure 12 includes the measured vibratory stress and loads data at 179 knots
with 6 degrees of B1s. This figure represents the maximum wind-tunnel
velocity condition and conftains the highest rntor L/D data obtained at that
velocity. Each plot shows the effects of a and CL/a on the measured
quantities.

Upper and lower rotor blade flatwise stresses are shown in Figures 12(a)
through 12 (f) at different blade radial stations. With two exceptions,
these stresses continuously increase with increasing CL/a at most radial
locations. There is evidence, Figure 12(d), that some stresses, at the
lowest tested values of CL/a, decrease slightly and then increase with
increased CL/a. This point of minimum stress between CL/a of 0.08 and
0.12 corresponds to the region in which the rotor was designed to operate.
Also the outboard stresses, at a radial station of 204 inches, are rela-
tively insensitive to changes in CL/a. The highest flatwise stresses
occur over the inboard half of the blade. Also evident in these plots is
the decrease in vibratory flatwise stress when shaft anzle is tilted back-
ward. The lower rotor stresses are lower than the corresponding upper
rotor stresses for the same control settings.

Vibratory edgewise stresses on the upper rotor blade ire shown at several
radial stations in Figures 12(g) through 12(i). The edgewise stresses
generally increase with CL/a but also demonstrate a minimum stress region
as was seen in the flatwise stresses. The edgewise stresses decrease
fairly consistently w4 th increase in positive shaft angle. Edgewise
stresses are conside ably lower than the corresponding flatwise stresses.

The vibratory torsional moment near midspan of the upper rotor blade in-
creases with CL/a as indicated in Figure 12(j). As with the flatwise and
edgewise stresses, the torsional response decreases with an increase in
shaft angle. These torsional response characteristics of the upper rotor
blade E.re also demonstrated in the upper rotor pushrod load which is shown
in Figure 12(k).
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Lower rotor pushrod load data are given in Figurt- 12(l). Tn. lower and
upper rotor vibratory puzt rio: .IGaz ".' ,:" ",! rr• L- sri i ituI,
about 1000 to 1500 pound,-.

Upper and lower rotor servo lcaus ar- comparea i rr: ir (m) thrw.,%
12(p). The lower rotor servo loadd:, aro greater thu:. th. :_rrespondinr•
upyi-r rotor loads, ,v.j|:ily tan fcr( and afl zerv. ic'... Ail loadr I:,-
crease with increazizhr C. 'o but generally decrease with c.zitive cha:,f
in a .s

The vibratory total stress at one of the most highly stressed points on the
upper rotor hub is shown in Figure 12(q). Like much of tne other stress
and load dat", the nub stresses gencrally increas. with _'- out also ex-
hibit the trend of first decreasing and then increasing at low values of
CL/e. At constant Bis, decreased vibratory stress is generally achieved
by increasing shaft angle.

In general, Figure 12(a-q) exhibits the predominant trends of the blade
response, control loads, and hub stresses to increase wt.t1 increase of
CL/a and to decrease with increasing as. The trends of the condition shown
are typical of other conditions included in the Appendix.

The plots in the Appendix for all test condition/B4 combinations were
examined to determine any further trend information exhibited by the
measured data. Table IV shows qualitatively tht! e-ffect-: f the major test
variables on this data. The test variables choser. are icl BiS, CT/A ,and
w. Table IV gives the change in each of the malor typ.es of measurements
due to a positive change in each of tne four test vtriEc2.es. The informa-
tion is only useful for general trend effects of all the data. For specific
effects at a particular operating point, the pertinent plots in the Appendix
should be used.

CORRELATION OF STRESS ALD LOAD DATA WITH THEORY

Measured blade stress and loaO data were compared to results of analytical
studies, using the Normal Modes Aeroelastic Blade Analysis. Measured rotor
hub stresses were compared to predictions based on a photoelastic model
study of the upper rotor hub (Reference 4). Theoretical calculations were
performed for the five tunnel test conditions listed in Table III. :-,
corrections for wind-tunnel wall interference wert- -aur t -ý the control
settings. The results of the correlation study -r,- zrc.:-.'ed in Fipure 13.
The measured and analyticdl values of each paramettr arc. TIctted as -I func-
tion of advance ratio (P). Conditions A and E, .sc, % .,ted in Thble Ili,
correspond to theoretical calculations at a ful:-.-. of rL,50O pounds

and an advanming blade tip Mach number of 0.90. Thesio t:c thu sairp nigh
Mach number conditions used in the performance calculations of the preceding
section. Condition A corresponds to a forward velocity of '.55 knots with a

rotor tip speed of 615 ft/sec at an advance ratio of 0.70. Condition B
represents a forward velocity condition at 294 knots having a tip speed of
546 ft/sec with an advance ratio of 0.92. Calcult.tionr U these conditiorns
are included in Figure 13.
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Vibratory flatwise stresses on the upper rotor blade are correlated with
theory and are shown in Figures 13(a) through 13(d). The normal modes
analysis is generally conservative in the prediction of these stresses at
each blade station. However, the analysis does exhibit the same trend as
the test data as advance ratio is increased. Theory is also in agreement
with the test data by predicting that the highest flatwise stresses occur
over the inboard half of the blade. Higher flatwise stresses are predicted
to occur at the full-scale lift and Mach number conditions (A and B in
Table III) than at the corresponding advance ratio conditions reached in
the wind tunnel.

Maximum upper rotor blade centrifugal force at the highes rotor speed
tested is calculated to be 58,900 pounds at the blade root. This condi-
tion results in a maximum blade centrifugal stress of 11,830 psi at a
radial station of 156 inches, or about 10 percent of the spar's tensile
strength. The maximum vibratory stress for the tested rotor blades occurs
at 60 inches of radius, principally in the flatwise mode. Since the
station-60 gage was not operating properly throughout the advance ratio
range, station 84 is assumed to represent the approximate critical stress
location. Stresses at this location are calculated to Cdiffer from station
60 by only 1600 psi (at p =0.7). The measured and predicted variation of
this stress with advance ratio is shown in Figure 13(a). Unlimited operat-
ing life is predicted for these rotor blades if maximum vibratory stress
remains less than ± 18,000 psi at maximum steady loads. Higher vibratory
loads are allowable at lower steady loads. Allowing for an increase in
stress at full-scale Mach number, the measured data of Figure 13(a) indicate
that the present blades can operate up to an advance ratio of between 0.6
and 0.7 for an unlimited period. Higher advance ratios are possible if
finite life limits are set, and advanced composite materials offer promise
of still higher stress allowables. Variations in blade geometry to decrease
high advance ratio stresses might also be considered.

The one-half peak-to-peak edgewise blade stress correlation on an upper
rotor blade is shown in Figures 13(e) through 13(g). As in the case of the
flatwise stresses, theory predicts higher than measured edgewise response.
As advance ratio increases, the variation of the theorectical edgewise
stresses is comparable to the measured stresses, except at the highest
advance ratio. At P = 0.91, the theoretical stress is larger than that
predicted at P = 0.70, while the test data decreases in this region. The
full-scale Mach number condition at p = 0.91 is predicted to have higher
edgewise stresses than the low Mach number calculation condition at the
same advance ratio, while there is little difference at i = 0.70.

A possible explanation for the highly conservative edgewise stresses pre-
dicted at p = 0.91 is the proximity of the first edgewise mode frequency of
the analytical blade to a multiple of -.he 1/rev rotor frequency causing an
analytical edgewise resonance. The first edgewise mode frequency of the
wind-tunnel condition, at a tip speed of 325 ft/ sec, is 2.842/rev, while
the full-scale condition, at 546 ft/sec tip speed, is 1.771/rev. These fre-
auencies are indicated in Figure 4. An earlier ABC model rotor test,
R-fer-n-e 5, indicated that ethgewise stress amplification could occur at
rotor rotational speeds corresponding to the natural frequency of the first
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edgewise bending mode. Although there are large third and second harmonics
of edgewise stress in the analytical prediction of the wind tunnel and
full-scale conditions respectively, the tunnel test data do not indicate
these large vibratory stresses. This indicates that an inaccurate descrip-
tion of the analytical blade properties may have been used in the theoreti-
cal calculations. Another possible contribution to the differences noted
in the correlation of both edgewise and flatwise stresses is that the
conditions compared are not tunnel test points but are conditions whose
control settings and loads were found by interpolation of the data between
measured test points. But this interpolation of the data is believed to
result only in a 0- to 1000-psi uncertainty in the stresses that were cor-
related. An additional 0- to 2000-psi inaccuracy of the flatwise and edge-
wise stresses is possible due to cross-talk interactions between the strain
gages. It is recommended that a further correlation study be performed,
especially in the hip!, v region.

Figure 13(h) compares the measured and analytical vibratory torsional
moment near the blade midspan. Analysis predicts significantly lower tor-
sional response than actually measured at each condition and indicates only
a slight increase in torsional response as advance ratio is increased. The
full-scale Mach number conditioins are predicted to have slightly lower
moments than their corresponding wind-tunnel casea.

Because of the large differences that exist in the correlation of the
measured and predicted torsional moments, the measured data were reevaluated
to determine their reliability. Examination of the torsional moment
measurements at other blade radial stations indicated. a different radial
trend than that preditted. Analytically, the blade torsional moment steadily
decreased along the blade from root to tip. The measured torsional moments,
however, indicated first a large increase and then a decrease along the
blade from root to tip. This led to an investigation of the torsional
moment measurements themselves.

For the same percentage of full-scale load, the flatwise and edgewise bend-
ing moment measurements indicate a true strain of 250 and 180 microinches/
inch respectively, whereas only 33 microinches/inch true strain is received
by the torsion gages. The low torsional strain is due to the relatively
stiff torsional properties of an ABC blade and results in low sensitivity
of the torsional bending measurements.

It was also found during the blade calibration that, due to the low sensi-
tivity of the torsion measurements, flatwise and edgewise blade moments
substantially influence the torsional strain gage outputs. As an example,
for the conditions correlated in Figure 13, at the radial station at 132
inches the average measured one-half peak-to-peak flatwise moment is
approximately 25,000 in.-lb, while the corresponding average edgewise
moment is about l'f,000 in.-lb. The blade calibration indicated a cross-talk
effect of 0.092 in.-lb of =orsional moment per in.-lb of epplied flatwise
monent, and 0.053 in.-lb of -;orsional moment per in,-lb of applied edgewise
moment, at the 130-inch radial station. For the conditions shown in Figure
13 this results in 2300 in.-lb of torsional moment due to flatwise cross
talk and 900 in.-lb o' torsion due to edgewise cross talk, creating a
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maximum cross-talk error of 3200 in.-lb of torsional moment. This is
approximately the magnitude of the torsional moment measurements for the
conditions shown in Figure 13(h). This is a 'worst case' example, but it
does indicate that due to the low sensitivity and the susceptibility of the
torsion measurements to flatwise and edgewise moment cross talkall of the
data obtained from the torsional moment measurements should be considered
unreliable.

Blade torsional response was also studied by correlation of the upper rotor
vibratory pushrod load shown in Figure 13(i). The analytical prea.ction of
the pushrod loads was generally lower than the test loads with the exception
of the condition at the highest advance ratio. The test data indicated
that the load decreased over most of the advance ratio range, while theoret-
ical pushrod loads increased. The failure of the predicted pushrod loads
to diminish at tne highest advance ratios may be due to the resonance effect
noted for the analytical edgewise stresses at high p. Due to mode coupling,
this edgewise resonance could have affected the torsional moment calcula-
tion, which in turn was used to predict the pushrod loads. Although the
measured pushrod loads shown in Figure 13(i) are higher than predicted, they
are still below the allowable limit for continuous operation of ±1500
pounds. The pushrod loads were measured independently of blade torsional
moment and thus contain noae of the inaccuracies discussed in connection
jith torsional moment nieasurement. Compared to the low Mach number predic-
tions, lower pushrod loads are predicted for the corresponding full-scale
Each number cases. This is probably due to the removal of the analytical
blade modes from the vicinity of a resonance condition for the full-scale
Mach number conditions.

Correlation of measured upper rotor hub total stress with the photoelastic

prediction method is shown in Figure 13(j). The stress shown was measured
in a region where high stresses were found to occur in the photoelastic
study, Reference 4. The study indicated that the hub stress at this loca-
tion is primarily a linear function of the applied head moment. The stress-

to-load ratio was found in that study to be 0.026 psi/in.-lb of head moment.

The use of this factor with the theoretical head moment yields the hub
stress prediction shown in Figure 13(j). This method predicts conservative
stresses when compared to the measured data. Based on this method, the

full-scale Mach number condition hub stresses are significantly higher than

those at the lower tip speed wind tunnel conditions.

In general, the behavior of measured ABC rotor blade stresses, loads, and

hub stresses is as anticipated. With the exception of the pushrod loads,

the loadings were lower than predicted. A more extensive correlation study

is recommended that would include tne effects of variable airfoil section
data, the determination of rotor-rotor interaction, and the inclusion of

variable inflow effects along with a reevaluation of the analytical blade

description.

ROTOR SYSTEM STRUCTURAL INTEGRITY

During rotor operation at 180 knots, three instrumentation terminal boxes

which were attached to the rotor head became unfastened and impacted upon
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the rotor blades. One of these boxes, weighing 24 pounds, struck the
leading edge of one blade near the tip, which was moving at approximately
650 feet per second. The system was brought to a safe stop without blade
failure or excessive vibration. Two blades were replaced and the other
four were repaired without removal, and testing was continued.
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DISCUSSION OF STABILITY AND CONTROL

STABILITY AND CONTROL DATA

In order to validate the high control powers predicted for the ABC rotor
system, out-of-trim moments of up to 20,000 foot-pounds were generated, for
selected cases, about the three primary body axes. With all other controls
fixed, increments of Als, Bls, and Ae were introduced in turn to produce
pitching, rolling, and yawing moments, respectively. The principal moment
control derivatives thus generated were:

Pitching Moment/A1 5

Rolling Moment/B 1 s

Yawing Moment/Ae

In addition, the six control coupling derivatives were measured:

Pitching Moment/Bis, /Ae

Rolling Moment/A1 s, /Ie

Yawing Moment/A 1s, /B1 s

These nine control derivatives were evaluated at 15 rotor initial operating
conditions, which correspond to trim points in the normal test spectrum.
The control derivatives, along with initial trim point information (11, Bj_,
C., and ec), are presented in Table V. Also shown in this table are three
longitudinal stability derivatives:

Pitching Moment/hx
Pitching Moment/e c

Pitching Moment/Bcs

These are defined as "stability" derivatives to differentiate them from
controls specifically designed for moment generation. They were not eval-
uated by holding all other controls fixed, but rather were computed from
the measured moment control derivatives, in combination with information
from adjacent rotor trim points. For example, if the subscripts correspond
to adjacent trim points,

PM2 =PM1 + 1pm A A1  + [PM B B2 1 Als [As 2 B Is [Bs2 s1

DPM+ Ae +8 -E 01 + tc

DAB 2 ] 8 2 1
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OPMSolving for i. I

5

PM-P I- is 1s
3PM 2 i- Ps2 -_s2j
3aa a~ - a 3A La -

ii 2 s is s2 Sl

aPM B is 2  B -3PM A62 AOiLB is 2 DA :ss L - a52

Since the control partial derivatives in this expression are known, the
derivative on the left side may be computed directly. The trim points
chosen for such a calculation would necessarily be such that they had
differing shaft angles but the same values of Ais, Bis, and ec. Similar
expressions may be derived for computation of 3PM/3i and aPM/aB{s, depicted
in Table V. c

A study of the derivatives in Table V reveals that the principal control
derivatives (HRM/aB 1 s, 3PM/MA1 s, 9YM/DAe) are of generally large magnitude
and are consistent in both sign and magnitude for a given advance ratio.
Of these, the yawing moment control power is, as anticipated, substantially
smaller than control power about the other two axes. The smallest values
of yaw control power occurred at lower collective pitch (low power) set-
tings. The Ae control was not investigated at the higher advance ratios
since airplane-type rudder control would be used in such flight regimes.

The six control coupling derivatives of Table V (defined in paragraph 2 on
page 20) are generally of low magnitude for all conditions except for the
3RM/MAe derivative, where substantial negative roll is introduced through
application of Ae control. This undesirable coupling will not be a problem
if a rudder is the primary yaw control at high speed. However, the rela-
tively low yaw control afforded by A6 at low power settings indicates that
development of an alternate yaw control method should be considered. A
possible alternative presently under investigation is differential rpm.
Some of the remaining control coupling derivatives of Table V may be noted
to display occasional increases in magnitude. These deviations are thought
to result from small random measurement errors in moment and/or control
settings, which may sometimes be cumulative in the computation of the deri-

vatives. This conclusion is supported by the seemingly random nature of
the sign and magnitude of the deviations, in contrast to the consistent
nature of the principal control derivatives. Further investigation of
such effects is beyond the scope of this report, but a statistical analysis
of large samples of the data, currently under way, tends to support the
viewpoint that all of the moment coupling derivatives except DRM/MAe are
generally small.

Of the three longitudinal stability derivatives shown in Table V
(aPM/3aa, ,PM/Dc, P ), the two relating to 6c and BIs are less
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critical, because the induced pitching moments can be anticipated and
nullified by proper application of A control when changes of collective
pitch or lift lateral displacement cotrol (Bis) are necessary. Such longi-
tudinal trimming is also typically necessary for conventional rotors when
collective pitch is altered. In the case of B' (not present on conven-
tional rotors), swashplate reorientation shoulAsminimize the effect of this
control on pitching moment. In any case, as exemplified by the data in a
preceding section dealing with rotor performance, more than ample Ai con-
trol was available at each trim data point to nullify the ABC system

pitching moment. For example, in Figure 9(e), the maximumAls control
required at the maximum lift coefficient is -8 degrees. Since the present
control system has an Als range of ±10 degrees, an additional 2 degrees is
available for nose-down maneuvers. From TablP V at the corresponding speed
(p = 0.47), it is seen that 2 degrees of Als can produce a pitching moment
of about 30,000 to 40,000 foot-pounds.

The angle-of-attack derivative of the rotor system, DPM/ac , is seen from
Table V to be destabilizing, as in the case of conventional rotors. The
rigidness of the ABC rotor produces an effect approximately an order of

magnitude greater than tiat of an articulated rotor of equivalent disc load-
ing. As a result, an aircraft with an ABC rotor will probably require a
larger horizontal tail than the same aircraft with an articulated rotor.
There are, however, two important considerations which may alleviate this
requirement. First, the magnitudes of the a derivatives shown in Table V
are probably conservative. More complex methods of calculating these
derivatives have been undertaken which involve larger samples of the wind-
tunnel data that are resolved through simultaneous solution of control input
and moment equations. The results obtaincd to date produce a5 derivatives
about 30 percent smaller than those depicted in Table V, at v = 0.47. The
reason for the differences is still under investigation, but possibly it
is related to the elimination of cumulative errors. As previously discussed,
such errors can be generrted in the method of computation presented herein.
The second mitigating consideration is the rigidness of the system itself,
which contributes to a high value of damping in the pitching mode, which
in turn should improve dynamic stability characteristics. Reference 6 has
shown that increasing the hinge offset (i.e.,rigidity) of a rotor enables
it to withstand increasing degrees of static instability without becoming
dynamically unstable (Figure 13 of Reference 6).

CORRELATION OF DERIVATIVES WITH THEORY

All of the stability and control characteristics of the ABC system as
measured in the wind tunnel are substantially as expected. To illustrate
this, Figure 14 presents the more important derivatives as a function of

advance ratio, and compares them to theoretical predictions. The theoretical
derivatives are computed at the same initial trim conditions that are used
in the performance calculations of Figure 11. These conditions are listed
in Table III. Changes of one degree in the appropriate control were used
to calcuiate the derivatives. The test data shown in Figure 14 are the
maximum and minimum values of the derivatives listed in Table V, at the
appropriate advance ratio. The range of test data includes points with
initial control settings that are the same or close to the control settings
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used for the theoretical calculations. This may be verified by a comparison
of the a and B'I settings listed in Tables III and V.

s is

The principal rolling, pitching, and yawing moment control derivatives are
plotted in Figures 14 (a), 14(b), and l1(c), respectively. Qualitatively,
the test data and theory are in good agreement. The largest quantitative
differences occur in the case of the rolling moment control (Figure 14 (a))
at lower advance ratios, where the measured derivatives are about 5000
foot-pounds less than predicted. This difference, however, is not consider-
ed significant, in view of the relatively high control power available.
For example, the maximum measured out-of-trim rolling moment coefficient in
the sample 179-knot performance data (Figure 9(g)) is -0.009. This is
equivalent to approximately 23,000 foot-pounds of rolling moment. As seen
from Figure 14 (a) at p = 0.47, a moment of this magnitude can be counter-
acted with less than 2 degrees of Bls control. Since the present control
system provides a Bls control range of ±10 degrees, there is ample authority
remaining fori roll maneuvers.

The degree of correlation shown in Figure l(a) would possibly be improved
by the use of flexible blade theory,rather than rigid blade theory as used
herein. Such an approach should be investigated for detailed stability and
control design work. However, rigid blade theory and test results are seen
to be in good agreement in the case of pitching moment control (Figure
14(b)) and yawing moment control (Figure 14 (c)). As previously mentioned,
Ae control is of practical interest only at low advance ratios, and this
control was not experimentally investigated above v = 0.21. The theoretical
curves of Figure 14(c) are extended to high advance ratio for completeness.

Figure 14(d) depicts the measured and predicted values of the coupling
derivative, 8RM/wAe, which correlate well at p = 0.21, where the measured
coupling is slightly less in magnitude than predicted. The high advance
ratio calculations are, again, of little practical interest.

Angle-of-attack stability is seen from Figure 14 (e) to correlate well with
that predicted by flexible blade theory throughout the advance ratio range.
Rigid blade theory canLot be used to compute this derivative, since much of
the moment is caused by precession effects previously discussed.

The results of this preliminary stability auid control study indicate that
the ABC system has large control power in pitch and roll at all advance
S ratios, but that the A6 control provides adequate yawing moments only at
higher rotor power settings. Coupling of the controls is minimal with the
exception of a Ae-rolling moment coupling and the effect of G and B' on
pitching moment. Control mixing may be desirable to reduce these efects.
All trends measured in the wind tunnel are predictable by theory, and the
theoretical methods in conjunction with the acquired data appear to provide
a sound basis for on-goi'g simulation and control system design work.
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DISCUSSION OF VIBRATION

MEASURED VIBRATION DATA

Wind-tunnel data from four vibration measurements are included in the
Appendix. Acceierometers measured lateral and longitudinal acceleration
on both the gearbox and the right strut of the module. The Appendix
shows plots of the one-half peak-to-peak values of each of these measure-
ments as a function of CL/O, at each of the 25 test condition/Bi. combina-
tions. The vibration data for the test condition at 179 knots with Bfs a 6
degrees are presented in Figures 12(r) through 12(u).

These plots indicate that the average one-half peak-to-peak vibration is
approximately ±0.4g at each location. Examination. of the vibration plots
included in the Appendix indicates that, at the conditions for which blade
stresses and control loads were correlated (Table III), the vibration was
also usually ±O. 4g or less. Figures 12(r) through 12(u) indicate that there
is no consistent effect on vibration due to an increase in C /a. In some
instances, vibration is insensitive to change in lift while ior other
control positions it either increases or decreases as C /a increases.
Similarly, there is no consistent effect on vibration dRe to a change in
shaft angle, although the general trend is for vibration to decrease as a
is tilted backward. An attempt was made to determine if these apparently5

changeable trends were applicable to all of the measured vibration data.

Table IV shows the general effects (non-numerical) of the major test
variables on total vibratory gearbox longitudinal and lateral accelerations.
The conclusions are based on the vibration characteristics of all of the
test condition/B' combinations in the Appendix. The general trends attri-
buted to all of ie data are simiiar to those found in Figures 12(r)
through 12(u) which correspond to one specific operating point. Table IV
indicates that no consistent trend of vibration due to change in shaft angle
is apparent except that generally it decreases as a is tilted backward.
Table IV also indicates that gearbox response is minimum in the CL/a region
(0.08 to 0.12) corresponding to the lowest measured blade stresses but
increases as lift is increased or decreased from this region.

The above results and those indicated in Table IV due to changes in B' and
p indicate that in general the one-half peak-to-peak vibration data folow
few obvious patterns with changes in the major test variables. This may in
small part be due to the averaging of the data cycles to create an average
cycle of each parameter. It was determined that a 0- to 10-percent reduc-
tion in the one-half peak-to-peak vibration occurred during the cycle
averaging process because of high harmonic content and relatively less
cycle-to-cycle repeatability of the vibration measurements compared to
stress and load data. Since this occurred randomly, it may partially
account for the scarcity of obvious vibration trends. Another influencing
factor may be the changes in forced response characteristics of the balance
structure, when subjected to varying combinations of forces and moments.
Analysis of such effects is beyond the interest of the present study, since
vibration levels were generally low.
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HARMONICS OF VIBRATION

In order to determine the principal harmonic orders contributing
to the total one-half peak-to-peak vibration in the fixed system, the
average cycle time histories were harmonically analyzed to obtain the first
ten harmonics. Figure 15 depicts harmonic content at four accelerometer
stations on the gearbox and on the right strut of the module. For each
harmonic, a bar indicates the range of vibratory amplitude recorded for the
8 data points at the 179-knot, B I = 6-degree condition.

Figure 15 indicates that the 2, 3, 6, and 9/rev harmonics reached the high-
est amplitudes. For the ABC rotor, with 3 blades on each of the upper and
lower rotors, the third, sixth, and ninth harmonics are theoretically at
the primary response frequencies, but the large second harmonic is not
expected.

As shown in Figure 15, the ninth harmonic of vibration is generally the
largest in magnitude. The 9/rev vibration is significant in both the
longitudinal and lateral directions at the gearbox and at the right strut
of the module. At each station, the third and sixth harmonics are smaller
in magnitude than the ninth. The third harmonics of vibration are larger
than/ the sixth in the lateral direction, while the opposite trend ccurs in
the longitudinal direction. The measured blade response data do not indicate
an appreciable amount of high-frequency content that could cause 9/rev exci-
tation of the gearbox or module. It is believed that the source of the
large ninth harmonic vibration may be due to operation near a module reso-
nance condition, although no shake test data for the module are available
at the frequency asso':iated with 9/rev to verify this opinion. Such
resonances are usually minimized by appropriate fuselage design in aircraft.

As previously noted, the existence of an appreciable second harmonic vibra-
tion content in the accelerometer measurements was not expected. As indi-
cated in Figure 15, this occurred at three of the four stations shown. The
gearbox longitudinal acceleration was the exception, having little 2/rev
vibration content. The fact that this accelerometer location was at the
zero butt line of the module (along the axis perpendicular to the rotor
shaft), while the other three locations were displaced from this axis,
indicated a possible vibration due to rotor head vibratory moment. It was
found that the second harmonic of each of the three affected accelerometer
measurements increased as the magnitude of the rotor head rolling moment
increased. This suggests that one of the three blades in either the upper

-• or lower rotor had an unbalance of some type or a 1/rev lift variation that
was of different magnitude than the other two blades. This would result in
a 1/rev moment in the rotating system which would cause a 2/rev vibratory
roll moment in the fixed system, which in turn would cause the second har-
monic vibration. Examination of the sleeve flatwise bending time histories
for the data included in Figure 15 indicates that they are primarily lirev
in vibratory content.

Harmonic analyses of the remaining test conditions indicate that the high-
speed condition shown in Figure 15 exhibits the largest 2/rev vibration
content. The 2/rev content decreases as either velocity or tip speed
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decreases. The second harmonic of vibration is in fact larger than the
third harmonic only for the 179-knot condition. The 2/rev vibration
occurring in the test data is therefore most significant at high forward
velocity and high tip speed, and its cause should be investigated further.
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CONCLUSIONS

Analysis of the measured ABC performance data .-ad"z ti.e fo!low:-."
principal conclusions:

1. The Advancing Blade Concept is a feasible design approach from the
standpoint of performance, structural integrity, and aeromechanica]
stability characteristics exhibited in the full-scale wind-tunnel test,.

2. The blade lift capacity of the ABC system is significantly greater
than ir the case of an articulated rotor operating at the same forward

* speed awa tip speed,as is lift response to collective pitch inputs.
Design lift coefficients for the present configuration can be mair.tainr-:

to advance ratios of at least 0.91, with tip clearanc.s of 20 inches or
greater.

3. Both shaft angle and Bs are effective in varyirg lift lateral dis-
placement. As expecte, the lift lateral displacement for optimum

L/D increases with advance ratio in the range ccnsidered.

4. Little or no imbalance occurs between upper and lower rotor rolling
moments when either lift or lift lateral displacement is varied.
Imbalances that do exist may be trimmed with small control inputs.

5. The requirement for conventional rotor antitorque power is largely
eliminated.

6. Measured rotor power and propulsive force characteristics are in general-

ly good agreement with those paedicted by rigid blade theory at all
advance ratios investigated. Increased power requirements are predicted
at high advance ratios if tip Mach number is increased to 0.9.

Analysis of the measured ABC stress and load data leads to the following

principal conclusions:

7. Characteristics of the measured ABC rotor blade stresses, control
loads, and hub stresses are as expected from earlier model tests

and analysis. An exception is the blade torsional moments, which

are found to be unreliable due to inadequate gage sensitivity and

high cross-talk interference.

8. Blade stresses and control loads tend to increase as C,/c or advance

ratio increases, and they tend to decrease as the shaft is tilted

back or as lift lateral displacement is decreased. Many blade
stresses achieve a relative minimum at design lift coefficients.

9. At design rotor lift coefficient and optimum L/D, the present rotor

blades have an unlimited operating capability at advance ratios up to

approximately 0.6.

10. The measured rotor blade and hub stresses are lower than predicted

by flexible blade theory. Measured control loads are higher than

predicted but below allowable at all advance ratios.
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Analysis of the measured ABC stability and control data leads to the
following principal conclirsions:

11. Large control powers about the system's pitch and roll axes are avail-
able at all advance ratios through application of A and B ,
respectively. There is little or no mutual coupling between these
controls.

12. Yaw control power (as produced by Ae) is less than that of pitch and
roll, and diminishes at low power settings. An alternate means of
yaw control in such regimes should be considered. The Ae control also
introduces negative rolling moment in forward flight.

13. Because of phase lag effects, significant system pitching moments
are produced when collective pitch, shaft angl', or lift lateral
displacement control (B ) is varied. These moments can be nullified
through application of iongitudinal cyclic pitch (A1 s). Reorientation
of the swashplates may also be used to minimize the effect of B' on
pitching moment. Is

14. Because of the greater pitching moment response to shaft angle change,
an airciaft with an ABC rotor will probably require a larger horizontal
tail than the same aircraft with an articulated rotor.

15. The principal control derivatives measured in the wind tunnel are well
approximated by rigid blade theory to advance ratios of 0.7. Measured
longitudinal static stability characteristics are in very good agree-
ment with flexible blade theory.

Analysis of the measured ABC vibration data leads to the following
principal conclusions:

16. Total fixed system vibration is usually low (< 0.4g vibratory amplitude)
at design lift coefficients. It consists primasily of third-, sixth-,
and ninth-harmonic content, with the ninth being generally the largest.
At high-velocity conditions, the second harmonic content is also large,
possibly due to a 1/rev unbalance in the rotating system.

17. Gearbox vibration generally decreases as the rotor shaft is tilted
back. Minimum vibration occurs at lift coefficients corresponding
to minimum blade stress.

18. The full-scale ABC rotor system was found to be capable of operating over
a substantial range of wind-tunnel conditions without any major
mechanical or structu:al problems, and without evidence of divergent
stresses or vibrations.
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TABLE IV. QUALITATIVF -FFECT OF MAJOR TEST VARTkBLES
ON ROTOR S'.,tESSES, LOADS, AND VIBRATION

Test Variable

Measurement(') as Bl's CL/O

UR ½ PTP BLD FS Decrease(2) Decrease Increase(2) Increase

UR 5 PTP BLD ES Decrease (2) Decrease Increase(2) Increase!
Decrease (4)

UR ½ PTP BLD TM Decrease (2) Decrease Increase(2) Increase(5)

UR ½ PTP PUSHRD Decrease (2) No Consistent Increase (2) Increase/
LD Trend(3) Decrease!4)

UR ½ PTP SRV LD No Consistent No Consistent Increase(2) Increase/
Trend(3) Trend(3) Decrease( 6 )

GB ½ PTP LONG A(C No Consistent No Consistent Increase(2) No Consistent

Trend(3) Trend Trend(7)

GB ½ PTP LAT ACC No Consistent No Consistent Increase(2) No Consistent

Trend(3) Trend(3) Trend

(1) All entries indi•ate change in measurement due to nositive chanae

in test variable.

(2) Except at some lowest values of CL/a where trend tends to reverse.

(3) But generally decrease.

(4) Increase but begins to decrease at U • 0.7.

(5) Except at ý,z 0.7.

(6) Increase but begins to decrease at i - 0.5.

(7) But generally increase.
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Figure 13. The Effect of Advance Ratio on Measured and
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APPENDIX

PRESENTATION OF MEASURED DATA

Presented in Figures 16 through 39 are the primary nondimensional perfor-
mance and control measurements: drag, torque, L/D, lift lateral displace-
ment, longitudinal cyclic pitch, side force, rolling moment, pitching
moment, and yawing moment. In addition, for the single-rotor conditions
(Figures 36 through 39), balance moments are compared to sleeve bending
moments and balance torque is compared to wattmeter reading. Figures 40
through 63 show recorded vibratory blade stresses, control loads, and fixed
system vibration.

All data are plotted as a function of lift coefficient and shaft angle of
attack for ease of cross plotting at any lift coefficient. The presenta-
ticns are grouped according to the flight conditions of Table I and subdivi-
ded according to lateral displacement control setting (B" ). In all, there
are data for 25 combinations of flight condition/B' settings.

Table VI (Page 100) lists all of the parameters plotted, together with their
letter designations within each figure. For example, "Upper Rotor 1/2 PTP
Flatwise Stress, R108" may be found in Part (c) of Figures 4o through 63.
Table VI also indicates when a measurement is unavailable due to an inop-
erative gage or insufficient data. The letter designations for the data
in the Appendix are held fixed, despite missing data, to provide for rapid
reference to a particular measurement at different flight conditions.
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*

Note: Performance data at an advance ratio of O.4T
with the lateral displacement control (B')
set to 6 degrees is contained in Figure
page 43.
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Figure 44. Stress, Load, and Vibration Data at an Advance Ratio of 0.35 With
the Lateral Displacement Control (B's) Set at 0 Degrees.
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9

Note: Stress, load, and vibration data at an advance ratio of
0.47 vith the lateral displacement control (Big) set at
6 degrees is contained in Figure 12, page 61.
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Figure 52. Stress, Load, and Vibration Data at an Advance Ratio of 0.47 With
the Lateral Displacement Control (B's) Set at 8 Degrees.
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Figure 56. Stress, Load, and Vibration Data at an Advance Ratio of 0,70 With
the Lateral Displacement Control (Bis) Set at h Degrees.

667



0

0 (D

(In

U) w

0 Li.

0 CD

CD LL ~

Zm~C 000

0 C) 0

CD 0 DC

o 0l 0 0 0

ISd 'SJd 0-18 did 3/1 81

668



*C o

00

U) C)

T-

* i Cu ~

w

Oo CD

0-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

* 0 00 0C0

C\J Cý ý

ISd 'S.d 018 dild Z/I Nnf

669



30000 I
ALPHA

SYMBOL SHAFT
(DEG)

25000. -4.00

0.0

CL 20000.

- V
m 15000.
a-

10000. '

5000.

0.
0.0 0.04 0.08 0.12 0.16 0.20

LIFT COEFF, CL/SIGMA

Wd) GAGE 53 R132

Figure 56. Continued.
p=0.70 B' =4 Deg

is

670



CJ

w

CC

0) Lo C

IL w~ 4)(

LLA
00 w- '

CEL 0000

CD LLL

000

-JXO--C d

0

0 CK

0 0 0 C0C
0 0D 0 0D 0D
0O 0 0 0D 0O

ISd 'Sjd 0-18 did 3/1 ý17



tLL D 00

acflr- ) 0D

04

0

Cl) Loc

0 CDi

~~tic

0 Lt
LA w

UU.

CDC

_O 0

0~ 0S 01 0i /18

672



e.J

0

_I
o~a:w ...

-JX

0
m 0

to(/) ~-. a:

0 LoD

-j Ivia

CA ) RA

Ci

NL %

LL0w w U

u T3

CDu~

0J~

______ ____ CD

0~ 0S 01 0i /18

673



XI'I

ZL( 000M
zJQ~-~

-Jj 040u

~4-l

0 CD D

LL

0 -
Cý -j V

0 IC) 0 If

ISd 'S3 018 did Z/1 8nl

674



-t,

I~i~CD 00

00

X0 00
>-f-

W- 4t

-- t 0

U CD I

0

L CD

Co 0 0) 0
0D LO) 0 LO

ISd 'S3 0-19 did Z/1 8nl

675



CDI
TLLW mmo

00

0 (M

U, C

1CD
4j4

LL

I 0 w-

oo o o
CD 0- 0

0E 0 0

C) 0D CD

8-1-*N1'WI 018 did 3/1 8nl

6 T6



___ -a:
Lo

C*
o L (DD

%0

a: (f i

aU)- Ci

0 )

o- o0- 08~ 0i iN

677



0 
CD

mI'~ 00<

C141

0

CD "4

CD)

N 

_4

81 '1A81S 181 did z/i 8nf

6 78U



crl-'%0 0
ILLCD 000~

CCU)%. I
C-J

-j0
0

x 004i
Uf) - cr

X :
0 CD

U)

LL..

00

CDD
Cý Cý C

0 C0

0LOl C LOl

81 '01 AýJS IN did Z/1 NI

679



N

a~u)- i CD
N

00

000

CD W
P-4

0 4 '44

w P
0 (L D 0q

ILr

O o 4)

-j

oo CD- LO

_ _ _ '01 A8 AddI8

68o



00

Zico 0

-Jr

(D

0 C Q
w 4-

LL 0- Iw D
0'

Lr% 0

0D QL 0m

Q Ln 0

*81 '01 A8IS UJd did Z/1 81

681



______ ___________

W-4

* rC
U)

UII) 4) 4J
N~ (D

wI~
00

u

CDD

CoDI

Im~C 00

M C) CD ID D C

Nm co

ICl 0d s n i /

* 682



CJ

ILLCD 000

CE:CnU I 0)

00

0;

o W

CJ

0 0LL (n u
w t-

00

_ _ _ _4 0 L

OD v t-7

5r-

.0

9 'OUIHI did Z/1 89

683



XLLOC 000O~mw
crc%- , I0C

00
0 0

CWj4

LL U

ODC
oD tk 1

____4 CD___ _ __ _ C)

9 '33U 'ON01 did Z/1 839

684



1, XLL 000

-j~

CD

Co CDCV

cu 0
'-44

Lf.

0 .j

____ __ _ ____ ___ ___

0Da

_______~~~C __ _ _ _ _ _ _ __ _ _

Lfl 0 '9

r. ~ E e*J 33L iu1 did Z/1 S8

685



clI
____ __ _ ___ _ __ ___ ___ ___ CýJ

CD

(0 LI
- -4

Ui) cr-
w to

C-4

U-U

0L
w w A

CD 7
00 c- a:

___ __ ___ __ to___ o1 fL

oý -j r7-4

TOuW I 1

-j
0

Lf 00(

0 ) CD0 )

9 'OOH '9N0-1 did Z/1 S8

686



30000.

ALPHA
SYMBOL SHAFT(DEG)__________

25000. 
(DEG)
-4.00

0 0.0

a- 20000.

cj)0

U-

M 15000.

a_
I-i

10000

5000.

0.
0.0 0.04 0.08 0.12 0.16 0.20

LIFT COEFF, CL/SIGMA

(a) GAGE 51 R84

Figure 57. Stress, Load, and Vibration Data at an Advance Ratio of 0.7u With
the Lateral Displacement Control (B' ) Set at 6 Degrees.
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Figure 63. Stress, Load, and Vibration Data at an Advance Ratio of 0.35 With

the Lateral Displacement Control (B's) Set at 4 Degrees (Single-
Rotor Configuration).
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